Root distributions in a laboratory box evaluated using two different techniques (gravimetric and image processing) and their impact on root water uptake simulated with HYDRUS

[img]
Preview
PDF
Language: English
3246Kb
Title:Root distributions in a laboratory box evaluated using two different techniques (gravimetric and image processing) and their impact on root water uptake simulated with HYDRUS
Creators:
Klement, Aleš; klement at af dot czu dot cz; Department of Soil Science and Soil Protection, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
Fér, Miroslav; Department of Soil Science and Soil Protection, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
Novotná, Šárka; Department of Soil Science and Soil Protection, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
Nikodem, Antonín; Department of Soil Science and Soil Protection, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
Kodešová, Radka; Department of Soil Science and Soil Protection, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
Journal or Publication Title:
Journal of Hydrology and Hydromechanics, 64, 2, pp. 196-208
Uncontrolled Keywords:flat laboratory box, image analysis, gravimetric analysis, root distribution, root water uptake, mathematical modeling

Abstract

Knowledge of the distribution of plant roots in a soil profile (i.e. root density) is needed when simulating root water uptake from soil. Therefore, this study focused on evaluating barley and wheat root densities in a sand-vermiculite substrate. Barley and wheat were planted in a flat laboratory box under greenhouse conditions. The box was always divided into two parts, where a single plant row and rows cross section (respectively) was simulated. Roots were excavated at the end of the experiment and root densities were assessed using root zone image processing and by weighing. For this purpose, the entire area (width of 40 and height of 50 cm) of each scenario was divided into 80 segments (area of 5x5 cm). Root density in each segment was expressed as a root percentage of the entire root cluster. Vertical root distributions (i.e. root density with respect to depth) were also calculated as a sum of root densities in each 5 cm layer. Resulting vertical root densities, measured evaporation from the water table (used as the potential root water uptake), and the Feddes stress response function model were used for simulating substrate water regime and actual root water uptake for all scenarios using HYDRUS-1D. All scenarios were also simulated using HYDRUS-2D. One scenario (areal root density of barley sown in a single row, obtained using image analysis) is presented in this paper (because most scenarios showed root water uptakes similar to results of 1D scenarios). The application of two root detecting techniques resulted in noticeably different root density distributions. Differences were mainly attributed to the fact that fine roots of high density (located mostly at the deeper part of the box) had lower weights in comparison to the weight of few large roots (at the box top). Thus, at the deeper part, higher root density (with respect to the entire root zone) was obtained using the image analysis in comparison to that from the gravimetric analysis. Conversely, lower root density was obtained using the image analysis at the upper part in comparison to that from the gravimetric analysis. On the other hand, fine roots overlapped each other and therefore were not visible in the image, which resulted in lower root density values from image analysis. Root water uptakes simulated with HYDRUS-1D using diverse root densities obtained for each cereal declined differently from the potential root water uptake values depending on water scarcity at depths of higher root density. Usually, an earlier downtrend associated with gradual root water uptake decreases and vice versa. Similar root water uptakes were simulated for the presented scenario using the HYDRUS-1D and HYDRUS-2D models. The impact of the horizontal root density distribution on root water uptake was, in this case, less important than the impact of the vertical root distribution resulting from different techniques and sowing scenarios.

Official URL: http://147.213.145.2/vc/vc1.asp

Title:Root distributions in a laboratory box evaluated using two different techniques (gravimetric and image processing) and their impact on root water uptake simulated with HYDRUS
Translated title:Root distributions in a laboratory box evaluated using two different techniques (gravimetric and image processing) and their impact on root water uptake simulated with HYDRUS
Creators:
Klement, Aleš; klement at af dot czu dot cz; Department of Soil Science and Soil Protection, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
Fér, Miroslav; Department of Soil Science and Soil Protection, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
Novotná, Šárka; Department of Soil Science and Soil Protection, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
Nikodem, Antonín; Department of Soil Science and Soil Protection, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
Kodešová, Radka; Department of Soil Science and Soil Protection, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic.
Uncontrolled Keywords:flat laboratory box, image analysis, gravimetric analysis, root distribution, root water uptake, mathematical modeling
Subjects:T Technology > TA Engineering (General). Civil engineering (General)
Divisions:Mathematics, Physics and Earth Sciences > Institute of Hydrodynamics > Journal of Hydrology and Hydromechanics
Journal or Publication Title:Journal of Hydrology and Hydromechanics
Volume:64
Number:2
Page Range:pp. 196-208
ISSN:0042-790X
Publisher:Institute of Hydrology of the Slovak Academy of Sciences and the Institute of Hydrodynamics of the Academy of Sciences of the Czech Republic
Related URLs:
URLURL Type
http://avi.lib.cas.cz/node/55Publisher
ID Code:8652
Item Type:Article
Deposited On:28 Jun 2016 14:05
Last Modified:28 Jun 2016 12:05

Citation

Klement, Aleš; Fér, Miroslav; Novotná, Šárka; Nikodem, Antonín; Kodešová, Radka (2016) Root distributions in a laboratory box evaluated using two different techniques (gravimetric and image processing) and their impact on root water uptake simulated with HYDRUS. Journal of Hydrology and Hydromechanics, 64 (2). pp. 196-208. ISSN 0042-790X

Repository Staff Only: item control page